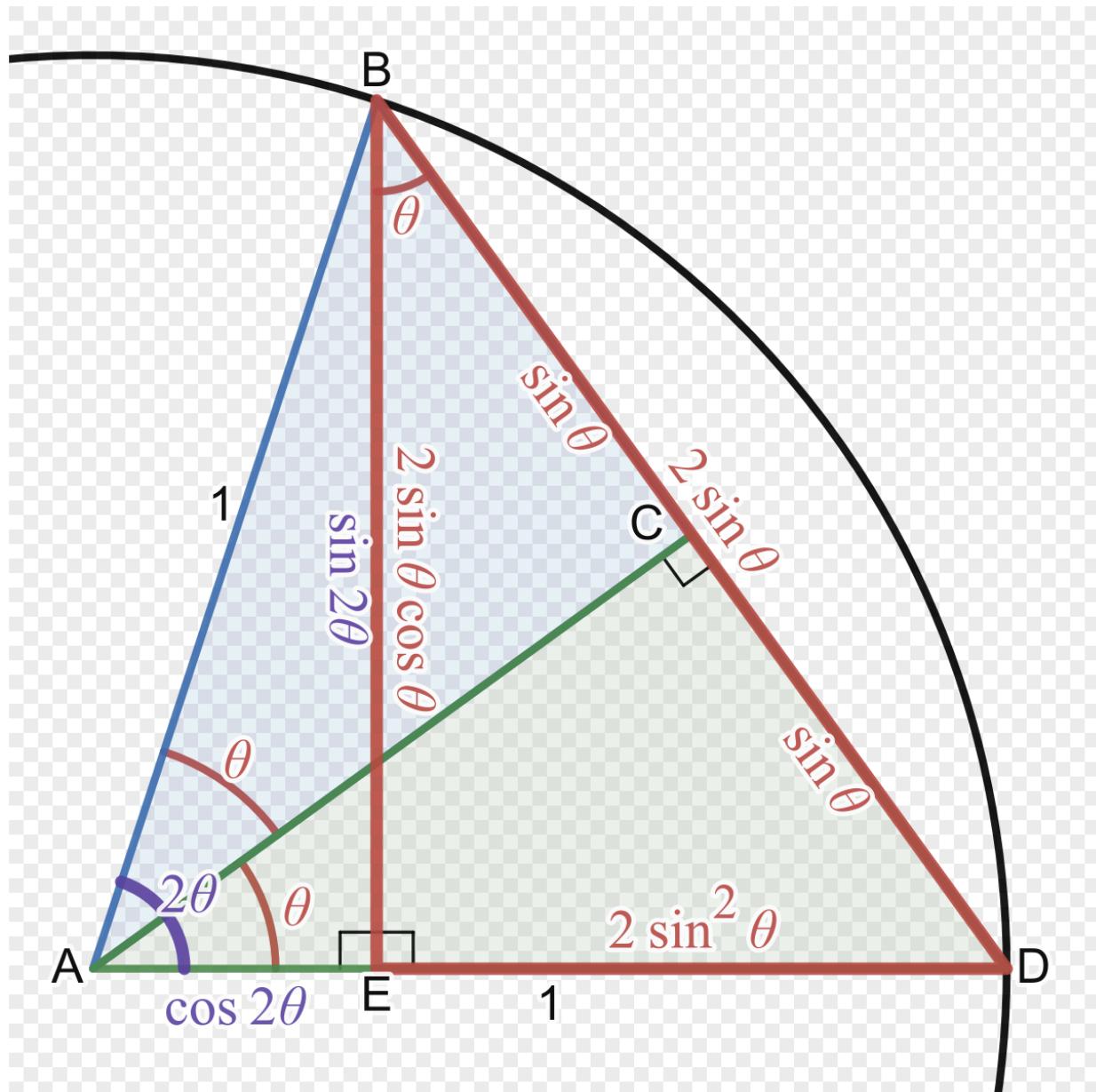


Pre-Calculus



1

1

https://commons.wikimedia.org/wiki/File:Diagram_showing_how_to_derive_the_power_reducing_formula_for_sine.svg

Calculus is the study of continuous change.

We start Calculus with a definition, which you don't need to know right now. Enjoy the preview.

Definition:

The limit of $f(x)$, as "x approaches p", exists and equals L ,

If there exist a δ , such that: $0 < |x - p| < \delta$

implies $0 < |f(x) - L| < \varepsilon$, for all possible ε .

We write:

$$\lim_{x \rightarrow p} f(x) = L,$$

x, p, L are all real numbers in the real number

system by the way.²

This leads to the definition of the **derivative**:

$$L = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}$$

$f'(x)$ equals L .³

² [https://en.wikipedia.org/wiki/Limit_of_a_function#\(%CE%B5,%CE%B4\)-definition_of_limit](https://en.wikipedia.org/wiki/Limit_of_a_function#(%CE%B5,%CE%B4)-definition_of_limit)

³ <https://en.wikipedia.org/wiki/Derivative>

PreCalculus course work involves the following:

1) Composite and Inverse Functions

page 5

2) Polynomial and Rational Functions

page 7

3) Exponential Functions and Logarithmic

Functions

page 9

4) Piecewise Linear Function

page 11

5) Inequalities, Linear and Quadratic

page 12

6) Rational Root Theorem

page 17

7) Trigonometric Functions

8) Parameters, Vectors, and Matrices

9) Complex Numbers

- 10) Conic Sections
- 11) Probability and Combinatorics
- 12) Series
- 13) Limits and Continuity

Composite Functions:

$$(g \circ f)(x) = g(f(x)).$$

⁴

For functions $f(x)$ and $g(x)$, “g of $f(x)$ ” as we would say, is expressed with the above equation and notation.

Example:

Let $f(x) = 2x$, and let $g(x) = x^2$ to begin with.

$$(g \circ f)(x) = g((2x)) .$$

$$= ((2x)^2)$$

⁴ https://en.wikipedia.org/wiki/Function_composition

Test points:

<u>x</u>	<u>$2x$</u>	<u>$4x^2$</u>
1	2	4
2	4	16
3	6	36

So if we plug in 1 for x into $f(x)$, our output is 2. Then 2 is passed through $g(x)$ and squared to equal 4.

Polynomial and Rational Functions

$$y = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

n is a non-negative integer that defines the degree of the polynomial. n can be 0, 1, 2, etc.

An example of a polynomial function is

$$y = x^2 + 4x + 4 .$$

The degree of the polynomial is 2.

$$a_2 = 1 .$$

$$a_1 = 4 .$$

$$a_0 = 4 .$$

The a's are constant coefficients.

If $p(x)$ and $q(x)$ are also polynomial functions,

$$Z(x) = p(x) / q(x) .$$

is also a rational function. $q(x)$ is never equal to 0.

Exponential Functions and Logarithmic Functions

$$b^n = \underbrace{b \times b \times \cdots \times b \times b}_{n \text{ times}}.$$

5

b is known as the base and n is called the exponent.

$$y = b^x .$$

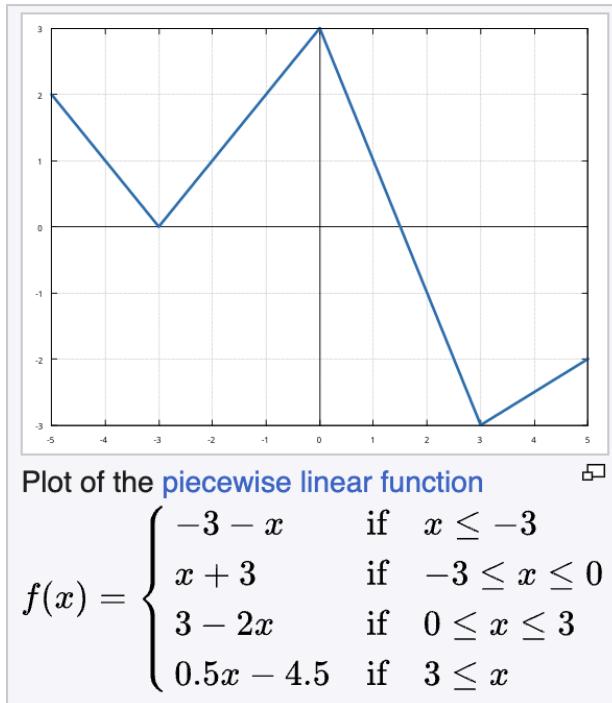
is an exponential function with constant base b .

$$\log_b y = x.$$

The logarithmic function above is the inverse function of the general exponential function. The output of a logarithmic function is an exponent.

⁵ https://en.wikipedia.org/wiki/Exponential_function

Piecewise Linear Functions



6

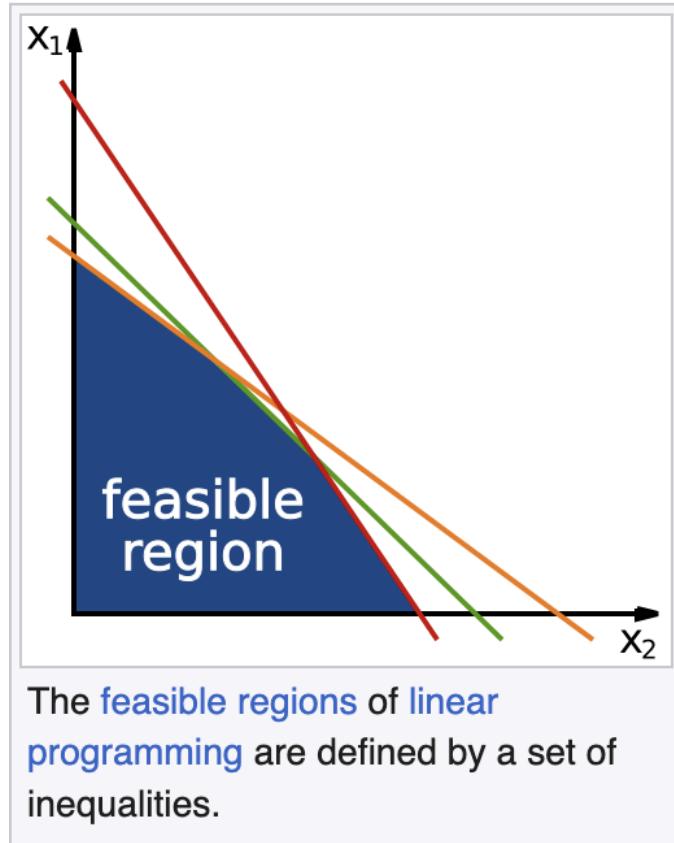
Piecewise functions are what they sound like. For a given piece of an interval, there is an output that doesn't behave like the other parts of the graph.

For example in the above graph when x is less than or equal to 3, we have a downward sloping line that would intercept the y axis at (0 , -3) . Its slope is -1.

⁶ https://en.wikipedia.org/wiki/Piecewise_function

How does the graph behave when our inputs for x are between -3 and 0 , including the endpoints?

Inequalities, Linear and Quadratic

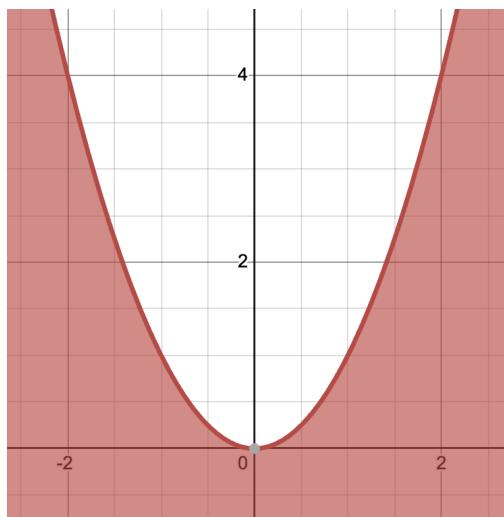


7

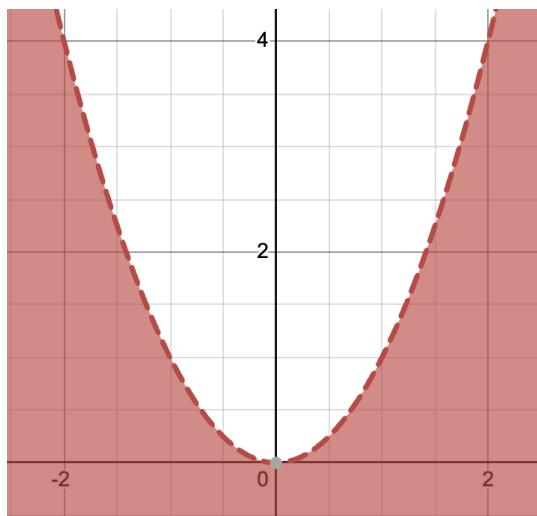
The above graph is just an intuitive picture, we will work with more specific examples.

⁷ [https://en.wikipedia.org/wiki/Inequality_\(mathematics\)](https://en.wikipedia.org/wiki/Inequality_(mathematics))

Example:

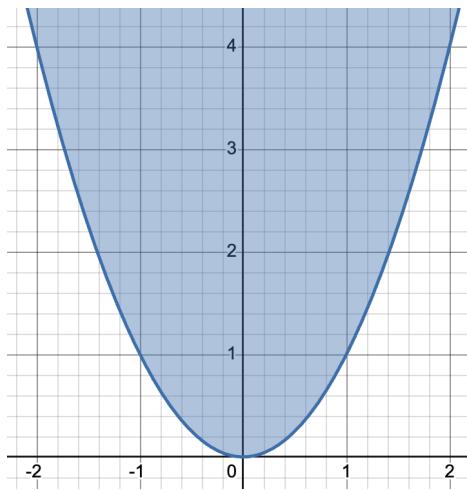


The above graph is of $y \leq x^2$. Note that we shade below, and the line itself is **solid**.

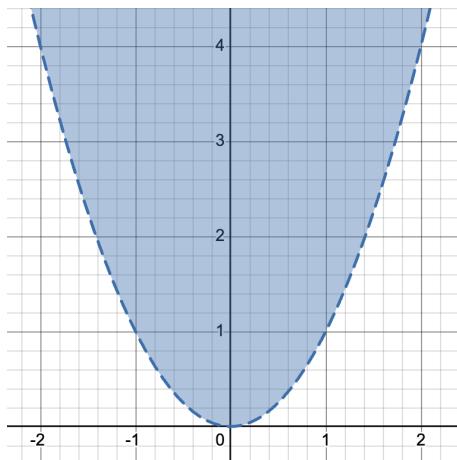


This second graph is $y < x^2$. We again shade below, but the line itself is *dotted*.

Example:

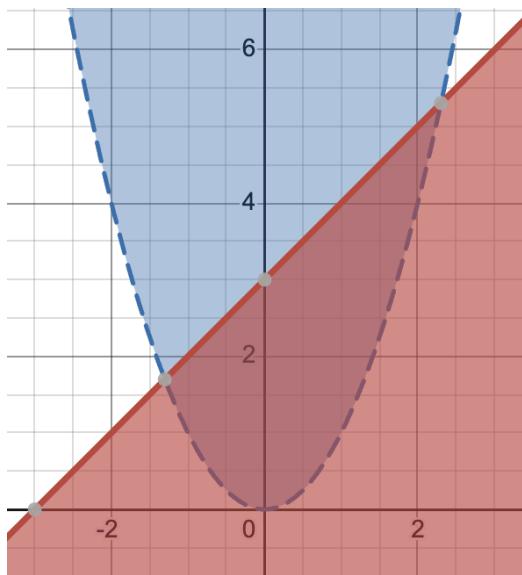


The above graph is of $y \geq x^2$. Note that we shade above, and the line itself is **solid**.



This next graph above is $y > x^2$. Note that we shade above, and the line itself is *dotted*.

Example:



Here we have $y > x^2$ and $y \leq x + 3$.



You would shade like this so to show the solution set of points. Notice how one of the lines is **solid**.

Rational Root Theorem

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 = 0$$

Essentially the Rational Root Theorem states that the above rational polynomial of non-negative integer degree n has at most n **roots**.

Roots are the x-coordinates where the graph crosses the x-axis, the y-coordinate equals 0, and the given polynomial or function equates to 0 for a given x input.

For example:

$$x^2 + 4x + 3 \text{ equals } 0,$$

when $x = -1$, or $x = -3$.

$x = -1$ or $x = -3$ are the roots of the above polynomial.

Joint Variation

Example:

$$\varphi(x, t) = kxy .$$

where x and y are independent variables and k is a constant coefficient.